
The Game Programmer’s
Guide to Torque

The Game Programmer’s
Guide to Torque

A K Peters, Ltd.
Wellesley, Massachusetts

Under the Hood of the
Torque Game Engine

A GarageGames Book

Edward F. Maurina III

Editorial, Sales, and Customer Service Offi ce
A K Peters, Ltd.
888 Worcester Street, Suite 230
Wellesley, MA 02482
www.akpeters.com

Copyright ©2006 by GarageGames, Inc.

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system, without written permis-
sion from the copyright owner.

Set in ITC Slimbach and ITC Eras by Erica Schultz for A K Peters, Ltd.

Cover image and art in the Advanced Maze Runner prototype by Christophe Canon.

Library of Congress Cataloging-in-Publication Data

Maurina, Edward F., III., 1969–
 The game programmer’s guide to Torque: under the hood of the Torque Game
Engine / Edward F. Maurina III.
 p. cm.
 “GarageGames book.”
 Includes index.
 ISBN 1-56881-284-1 (pbk. : alk. paper)
 1. Computer games—Programming. I. Title.

QA76.76.C672M36 2006
794.8'1526—dc22

2005056630

Printed in the United States of America

09 08 07 06 10 9 8 7 6 5 4 3 2

v

This book is dedicated to my wife Teresa, for her encouragement, her advice, and
most of all for her tolerance of the odd hours I kept while locked away in my office
writing this book.

I must give special thanks to Jerry for acting as an idea bouncing-board and for
listening patiently as I discussed chapter ideas over, and over, and

Of course, I must also thank the many members of the GarageGames community for
their unfailing interest in the guide and their encouragement.

Lastly, I would like to thank the GarageGames staff for making the publication of this
book possible, giving specific thanks to the “draft reviewers”—Josh Williams, Matt
Fairfax, Ben Garney, Matt Langley, and Justin Dujardin.

vii

Contents

 Preface . ix

I Introduction

1 Introduction . 3

II Engine Overview

2 Torque from 10,000 Feet . 13

3 Torque Tools . 35

4 Introduction to TorqueScript . 97

III Game Elements

5 Torque Core Classes . 143

6 Basic Game Classes . 157

7 Gameplay Classes . 201

8 Mission Objects . 263

9 Game Setup Scripting . 347

10 Gameplay Scripting . 383

11 Special Effects . 419

12 Standard Torque Game Engine GUI Controls 455

13 Game Interfaces . 539

IV Making the Game

14 Putting it All Together . 571

 Index . 599

ix

Preface

So, you want to make a game? You may be standing in a bookstore holding
this book in your hands, or you may be reading this online. Whatever the case
may be, some or all of the following thoughts and questions are probably run-
ning through your mind:

• I want to make a game, but can I do it on my own or with a small team?
Making a game is great fun, and a very rewarding experience. You can
defi nitely make a game alone or with a small team as long as you have the
right tools available to you. One of those tools is the Torque Game Engine
(TGE) and the other is Game Programmer’s Guide to Torque (GPGT). Using
TGE and GPGT, you can create any game that your imagination can encom-
pass and that your skills will allow.

• TGE sounds good, but will GPGT tell me what I need to know to make
my particular game? TGE is a powerful and fl exible game engine that
can be used to make any number of different and unique games. You may
choose to make single-player or multiplayer games. The game can be a
shooter, an adventures, or a role-playing-game, to name just a few. Game
Programmer’s Guide to Torque will teach you the Torque skills you need to
create these game types. (See section 1.1, “About the Torque Game Engine,”
and section 1.2, “What This Guide Contains,” to learn more.)

• Can I get up to speed fast enough to make my game? Like any other
complex and powerful piece of software, Torque can be hard or easy to
learn. Everything depends on your approach to the task and whether you
have the right resources available to you. With Game Programmer’s Guide
to Torque, with the hundreds of samples that come on the accompanying
disk, and with the experience of making the sample game we write while
reading this book, you will be able to ramp up very quickly and to move
on to your goal—namely, making your own game.

Having been down the path you are just now starting upon, I know how hard
it can be to get started and how hard it is to stay motivated in the face of the
many challenges involved with learning to use Torque along with the other
skills you will need to acquire. I decided to write this guide so that others
would not have to struggle to learn Torque.
 In closing, this guide is the result of my own need for a better reference
and my desire to help other learn about the powerful and fl exible Torque
Game Engine. It is the culmination of my own game-writing and Torque-using
journey. I sincerely hope that it provides you a pleasant beginning to your
own game-making adventures.

Introduction Part I

3

1.1 About the Torque Game Engine

1.1.1 What Is Torque?
The Torque Game Engine (TGE) is a AAA 3D game engine made available
to the indie games community by GarageGames. It is the product of many
years of dedicated work and interactive design and development by the staff
of Dynamix, a well-known game development company which the founders
of GarageGames previously started. As Dynamix made games, they would
reuse and refi ne, taking the best parts of their work to the next generation of
the engine. With this engine, they produced games like Earthsiege, Starsiege,
 Tribes, and eventually Tribes 2. All in all, it is safe to say that the code in this
engine has its roots in code written as far back as 1995 and perhaps even
earlier.
 In summary, the Torque Game Engine is a product with man-centuries
of development done by proven experts who time and time again used this
engine to produce stellar titles. As far as I know, there is no other game engine
like this on the market at any price.

1.1.2 Why Should I Use Torque?
Educational: One of the best ways to learn programming is to read code written
by other developers. If you are going to read code, you might as well have fun and
read game code and learn a few tricks in the process.

Resume Building: Mod (modify) the engine to show off your skills to future
employers.

MOD Makers: How many times have you gotten stuck trying to mod other engines
because they did not support feature X? Now you have the source and can easily
add any features you want and truly differentiate your mod from the rest.

To Make Great Games! That’s what we all live for, so do it. This is an unprecedented
opportunity to build your game using an industry-proven game engine that rocks!

—GarageGames Site

One of the beauties of the Torque Game Engine is that you don’t have to use
it to make games. “What’s that, you say?” I repeat, you do not have to use
the Torque Game Engine to make games. With the features included in this
engine, you can just as easily make a variety of professional, educational, or
“your category here” products.

Introduction
Chapter 1

Part I Introduction

4

 Of course, you must abide by the end user license agreement (EULA), but
once you have licensed the engine, the terms of the agreement are pretty free
about what you can create. The only real limitation is your own imagination.

1.1.3 Not Just First-Person Shooters
Some people, examining the Torque Game Engine for the fi rst time, may be
under the impression that it is only for making fi rst-person shooters (FPS).
Nothing could be further from the truth. Yes, it is well suited to the FPS genre,
but it can and has been used to make a variety of different game types.

Current Titles

Action Games

 Marble Blast GOLD Think Tanks

 Lore Orbz

 Introduction Chapter 1

11

1.8.1 Icons Legend: Warnings, Notes,
 and Expert Tips
Throughout this guide, you will be presented with side notes of various forms.
Some of these will be warnings of odd or misleading behavior, others will be
notes on interesting bits or facts, and some will be expert tips for those who
want to explore the edges of Torque’s behaviors. You will be able to recognize
these side notes by looking for the following icons.

Warning Note Expert Tip

1.8.2 Game-Building Lessons
Throughout the guide, you will fi nd sections marked as one of the following:

1. Maze Runner Lesson #123 (90 Percent Step). If you intend to make the
game at the end of the guide, you must complete these lessons. They con-
struct game elements without which the game will not function.

2. Maze Runner Lesson #123 (10 Percent Step). These lessons are consid-
ered optional when making the initial version of the game. If you should
choose to skip them, the game will still be playable but may be a bit rough
around the edges.

These lessons will be largely independent of each other, but if a lesson depends
on another lesson, the numeric ID of the lesson, as well as the chapter it is
in, will be referenced.

Combined Lessons Appendix

For those who want the entire lesson set in one place, all of the lessons from
the printed chapters, up to but not including Chapter 14, are included in the
“Combined Lessons” electronic appendix.

Skip Ahead!

To learn about the motivation for the above lesson titles, and to learn what
the game will be, please skip ahead to Chapter 14. There, you should read
Section 14.1, “Maze Runner: A Simple Single-Player Game,” which includes
the following.

Part I Introduction

12

• Game Elements. Here, we will briefl y discuss the concept of a game
element.

• Game Goals, Rules, and Mechanics. Next, we will explore the motivation
for planning a game’s goals, rules, and mechanics before we write the
game. Then, we will do this planning for our game.

• Setting up our workspace. Before we can start working on the lessons,
we need to set up a workspace. In this section, I will instruct you on what
steps are required to prepare for the lessons.

• 90 Percent or 10 Percent? Lastly, I will give you an overview of the 90
percent versus the 10 percent steps and why these ideas matter.

So, skip ahead; it’s OK. When you’re done, you can come back and start
learning about Torque!

Engine Overview Part II

15

The Torque Game Engine (TGE) has a long legacy. In its various incarnations,
it has been used to make both non-networked single-player games and
networked multiplayer games. Today, TGE has the following features.

• Single-player and multiplayer ready. TGE is based on a standard client-
server architecture and is fully scalable to 128 players and beyond.

• Raster-based graphics. TGE is not shader based but has the capability to
incorporate any features you desire (you have the source code). Further-
more, it is the predecessor to the Torque Shader Engine (TSE), and thus
most things learned using TGE will apply to TSE.

• Event-driven simulation. TGE is designed around an event-driven simu-
lator. It utilizes separate client and server event loops. Additionally, most
game logic and GUI logic is driven by an event system.

• Memory and network bandwidth effi cient. TGE is designed to have a
reduced memory footprint and an accompanying low-bandwidth require-
ment per connection. It utilizes static datablocks for common information
and network compression plus transmission-reduction algorithms.

• Broad functionality. Because of its long heritage, TGE comes ready with
most of the methods and functions required for standard game calcula-
tions, actions, and responses.

• Fully integrated. TGE incorporates all the code required to render/play/
capture all game elements, including GUIs, sound, 3D graphics, and other
I/O (input/output). It also includes a large and expanding set of content
creation and debugging tools out of the box.

2.1 TGE Terms and Concepts
When you fi rst start working with TGE, you will come across terms like inte-
rior, shape, datablock, portal, IFL, image, etc. Some of these words have TGE
specifi c meanings, others are industry-standard terms, and a small set are
hybrid terms with meanings in both worlds. Either way, if you are not very
experienced, just trying to fi gure out what these terms are may be a big chal-
lenge. To help ease this transition, we will run through some of the more con-
fusing terms and concepts you will encounter while working with TGE. For a
more extensive list of terms, see the “Glossary Of Terms” appendix.

Torque from 10,000 Feet
Chapter 2

Part II Engine Overview

16

2.1.1 Shapes and DTSs (TGE Term)
A shape, also known as a DTS object, is a model created using a polygon (or
equivalent) editor. Such models may have

• skeletal animations (see Section 2.1.8, "Animations: Blended vs. Non-
Blended"),

• multiple skins (textures),

• animated skins,

• visibility animations,

• multiple levels of detail (see Section 2.1.5, "Level of Detail"),

• translucent and/or transparent components,

• multiple collision boxes (see Section 2.1.6, "Collision Detection”),

• and much more.

This is the fi rst of two model categories used by TGE. DTS, which stands for
the Dynamix Threespace Shape, is both the shorthand notation for this con-
cept and the fi le extension (e.g., player.dts). Shapes are generally used to rep-
resent nonstructural entities such as players, power-ups, trees, and vehicles.
Shapes can be created with 3ds Max, MilkShape, or Caligari’s gameSpace/
trueSpace, to name just a few possible content-creation tools. See the Garage-
Games website to learn how this is done and to fi nd the proper exporter for
your content tool(s).

Non-DTS Renderers?

Some users have complained that they would rather use an alternate format
instead of being “forced” to use the DTS format. This is entirely possible.
Users have already produced alternate mesh renderers to include such formats
as 3DS and MS3D. If you have a favorite format and are familiar with how it
works, you can simply pick up one of the previously mentioned mesh render-
ers and modify it for your own format.

Shapes in Our Game

In the prototype for our game, we will need just a few shapes: a player, coins,
maze blocks, and fi reballs.

• An avatar or player. The lesson kit comes with Joe Maruschak’s “ Blue
Guy” (Figure 2.1, left), but we will not be using him beyond a quick intro-
duction. Why? In order to demonstrate the minimum set of animations that
need to be included to make the shape work with the Player class, we will
make the “Simplest Player” (Figure 2.1, right), a simple geometric shape.

• Pick-ups, maze blocks, and fi reball blocks. In our game, we will also
require shapes to represent coins that we can pick up. Also, we will need

 Torque from 10,000 Feet Chapter 2

17

a variety of blocks and obstacles (fi reball blocks) to build our mazes from
(see Figure 2.2).

2.1.2 Interiors and DIFs (TGE Term)
Interiors are models created using convex (see Section 2.1.3, “Convex vs.
Concave”) brushes.
 The InteriorInstance class, frequently referred to simply as Interior(s), is
used to display models that represent any structural object, to include such
things as buildings, bridges, walls, and other large structures. The motivation
for this name comes from the fact that these objects can have an actual inside,
i.e., interior.
 This modeling technique is used to solve a few technical issues associ-
ated with creating large and geometrically complex models that are intended
to be entered by other models (or the camera). Some of the biggest technical
problems solved by this technique are the following.

• Effi cient collision detection. Binary space partitioning (BSP) trees are gen-
erated and used for detecting collisions against Interior objects. BSP trees
provide a very effi cient way of determining object collision, one of the most
CPU-intensive processes a real-time application performs.

Figure 2.1.

Simple Player shapes.

 Blue Guy Simplest player

Figure 2.2.

Required shapes and
blocks.

Coins Maze blocks Fireball blocks

Part II Engine Overview

18

• Visibility culling. This technique also provides numerous shortcuts for
culling of visibility through the use of portals (see Section 2.1.7, “Portals”)
so that rooms and terrain that the player can’t see don’t get sent to the
graphics card for rendering. This is a lot harder to do, from a mathematical
standpoint, than a nonprogrammer might imagine.

• Effi cient lighting. Finally, this technique “regularizes” (to abuse the Eng-
lish language a bit) the process of calculating lighting and shading as
affected by the presence of the model in the game world.

DIF, which stands for Dynamix Interior Format, is both a shorthand notation
for the same concept and the extension for these fi les (e.g., myBuilding.dif).
 Interiors can be created with QuArK, Worldcraft/Hammer, 3ds Max,
MilkShape (not advised), or Caligari’s gameSpace/trueSpace. See the Garage-
Games website to learn how this is done and to fi nd the proper exporter for
your content tool(s).

2.1.3 Convex vs. Concave (Industry Terms)
In TGE, all collision meshes must be convex, not concave. The trouble is,
many people either do not know what these terms are or cannot remember
how to identify a convex or concave mesh.
 Finding the parts of a mesh that are concave (making it a bad collision
mesh) can be frustrating at best. Therefore, you can follow this simple rule
when making collision meshes:

If any line segment on the mesh, when extended infinitely in both directions,
passes through the interior of your mesh, the collision mesh is concave and
therefore bad.

Or the shorter version:

Line segment passes through interior of collision mesh . . . bad (Figure 2.3).

Figure 2.3.

Using line segments to
discover concavity.

Line segment passes through—concave Problem solved—convex

 Torque from 10,000 Feet Chapter 2

33

 ActionMaps

ActionMaps are a special class designed to capture and redirect inputs. There
are two kinds of ActionMap. There is the GlobalActionMap and the normal
ActionMap. The main differences between these are:

• GlobalActionMap. This is the daddy of input processors and supersedes all
other processing methods. This action map should not be popped from the
processing stack (see below).

• ActionMap. This is a generic action map. It takes lower priority than all
other processing methods. These action maps can be pushed and popped
from the processing stack as the game’s requirements change.

ActionMaps in Our Game

Our game will require some kind of mapping between keyboard and mouse
inputs to player movements and behaviors. We will stop briefl y and show
what these mappings are and discuss how they are attached (indirectly) to
the player.

Processing Stack

What the heck is a processing stack, you ask? TGE implements an event queue,
which is used to collect all user inputs and various other events. These events
are then processed by the engine. The ActionMap is one consumer of these
events. Because ActionMaps can be stacked and because they process events
on the input queue, I refer to this as the processing stack.
 In short, an ActionMap not on the processing stack is not catching and
therefore not processing input events.

2.4.2 TGE File I/O
TGE has a fi le manager that maintains a working list of all the fi les found in
the game directory and all subdirectories. This list is created on start-up. Sub-
sequently, the fi le manager will locate new fi les that you add and then attempt
to load from the console or via scripts. It will also notice when fi les have been
modifi ed and recompile and load them when requested to do so.
 In short, with TGE you can easily add new fi les and modify existing con-
tent without having to restart the engine. This is a huge timesaver when creat-
ing new content and while debugging.

It is worth mentioning
that finding new files
without restarting
is a new feature
(introduced in version
1.4). If you are
currently using 1.3 or a
prior version, you may
use the setModpaths()
function to find new
files. This isn’t as nice
as an automatic find,

but you can still work
without restarting.

Part II Engine Overview

36

Tools Start Tool Description

Mission Area
Editor

(Area Editor)

F5 This tool allows you to adjust the boundaries
of the current mission and provides a means to
mirror the current terrain.

Terrain Editor F6 This tool provides the ability to directly
manipulate the terrain using the mouse as a
multi-operation brush.

Terrain Terraform
Editor

(Terraformer)

F7 In addition to providing all the capabilities of
the Terrain Editor, this editor allows you to load
images as terrain files and to apply various
algorithmic generators and filters to the terrain.

Terrain Texture
Editor

F8 In addition to providing all the capabilities of
the Terrain Editor, this tool allows you to select
any number of textures and apply them using
a set of algorithms to determine blending and
placement.

Terrain Texture
Painter

(Terrain
Painter)

Window Menu �
Terrain Texture

Painter

In addition to providing all the capabilities of
the Terrain Editor, this tool allows you to select
and subsequently to apply up to six different
textures to the terrain.

3.3 The World Editor Tools
Let us tackle the World Editor toolset fi rst, as it has the most components and
is the most likely place to start when creating a simple mod (modifi cation) or
a new game.
 As we investigate and learn how to use each of the World Editor tools,
please use the GPGT Lesson Kit (provided on the accompanying CD) and run
the “World Editor Training” mission.

3.3.1 World Editor Basics
Before leaping into the World Editor tools, let us review some things that
hold true for all of the tools. First, we will review the user interface devices.

Subsequently, we will discuss the mechanics of movement and viewpoint
control, as well as object selection, translation, rotation, and scaling.

3.3.2 World Editor Devices
In this guide, the cursors, menus, and other graphical elements that you
encounter in the editors are referred to as devices. Simply stated, these devices
provide meaningful feedback to you regarding what action can or should be
taken. The terms below are mostly of my own invention, with the exclusion
of the appropriately named gizmo.

Table 3.1 (continued).

Please note that, while
you are editing in the
World Editor, you can
get help simply by
pressing F1. This will
bring up a help dialog
with descriptions of
the tools and their
features.

 Torque Tools Chapter 3

37

3.3.3 Cursors
Table 3.2 explains what each cursor image means.

Device Description

No-Select Cursor

When the cursor looks like this, it means that the cursor is not
over a selectable object. In other words, you are pointing to
an empty space.

Select Cursor

When the cursor looks like this, it means that the cursor is
over a selectable object. In other words, you are pointing to
an object that can be selected.

Grab Cursor

When the cursor looks like this, it means you have
successfully selected an object’s gizmo axis in translation
mode. In other words, you can move the object around by
clicking and dragging when this cursor device appears.

Rotate/Scale Cursor

When the cursor looks like this, it means you have
successfully selected an object’s gizmo axis in either rotation
or scaling mode. It also appears when you have successfully
selected a bounding box face for scaling or rotation.

3.3.4 The Gizmo and Gizmo Scales
The graphic in Figure 3.1 represents the gizmo. The gizmo is a device that is
activated when you select one or more objects. It displays the three traditional
x-y-z axes. Individual axes are selectable and afford the ability to translate,
rotate, and scale.
 By default, a gizmo axis is dark cyan when not selected and light cyan
when the cursor is over it or when it has been “grabbed.” Additionally, when
a selected gizmo is used for an operation, one of three scales will be shown:
the gizmo translation, rotation, or scaling scale.

This scale shows the current position of the
object’s centroid when you use the gizmo to
translate an object.

x: -51.024, y: -127.829, z: 226.473
Gizmo Translation Scale

This scale shows the current degrees of rotation
around the selected axis when you use the
gizmo to rotate an object.

x: 0.000, y: 0.000, z: 1.000, a: 52.519
Gizmo Rotation Scale

This scale shows the current height, width, and
depth of an object when you use the gizmo to
scale it. <w,h,d> correspond to the x,y,z axes
of the gizmo.

w: 1.2000, h: 1.2000, d: 2.144
Gizmo Scaling Scale

Table 3.2.

Descriptions of cursors.

Figure 3.1.

The axis gizmo.

Part II Engine Overview

38

3.3.5 Menus and Windows
The World Editor provides a set of traditional menus for selecting the current
tool as well as other features (see Figure 3.2).
 Please note that all of the menu options will be covered in Section 3.5.3,
“World Editor Menus.”

Figure 3.2.

World Editor menus.

Figure 3.3.

Tool windows.

 Several of the tools have windows that appear
on the right side of the screen (see Figure 3.3).
Although these windows have many similarities,
it will be better to explain them individually in the
respective tool sections below.

3.3.6 Selection Boxes
When selecting a previously unselected object,
the selection cursor lets you know when you can select something, and the
green selection box (see Figure 3.4) shows which previously unselected object
will be selected.
 Once you have successfully selected an object, the object will be shown
with both a red selection box and a yellow selection box (see Figure 3.5). The
red box is object aligned, while the yellow box is world aligned.
 The purpose of the yellow box is to show which objects are selected as a
group and will therefore be affected by any actions you take. The red boxes
are to show which individual objects in the group selection box are actually
part of the selection. Notice that, in Figure 3.5, the leftmost and rightmost
characters are selected, while the middle character is not.
 Once you have successfully selected an object, the selection box will turn
blue if your cursor passes over it (see Figure 3.6). Please note that this is not
true for drag-select.

571

Putting It All Together
Chapter 14

14.1 Maze Runner: A Simple Single-Player Game
Maze Runner is a simple platform game brought into the 3D realm. It isn’t
based on a specifi c game, but it is inspired by games I have played. My purpose
for this game was not to create a new blockbuster but rather to provide an
easy-to-understand game idea upon which we could hang examples as we
worked through the guide.
 A 60-second summary of this game would read something like the following.

In this game, you run around a maze and pick up coins. Your goal is to pick up all the
coins while avoiding various obstacles. Mazes will vary in size and in scope. They may
run along one level, or have multiple levels. Along the way, as you hunt for all of the
coins, you will need to avoid disappearing bridges that may drop you to a lower level
or into a fiery cauldron below. You will be blocked by fireballs and impassable chasms.
To get around these obstacles, you will have to use your ingenuity and the occasional
teleport station. Timing, awareness of your surroundings, agility, and a little luck are
all required for winning. You will start with three lives and gain a new life for each
level you complete. To continue the game, pick up all of the coins and move on to the
next level. Get the highest score and win the admiration of your peers! Good luck.

14.2 Game Elements
Let’s stop for a moment and defi ne the term game element. This is a term that
I am using to describe any and all of the pieces that are used to create a game.
For example, all of the following listed items are game elements:

• The game view. This general term incorporates point of view, fi eld of view,
and other view-related concepts and describes the end view of our game.
We discuss this in Chapter 7, “Gameplay Classes.”

• Interfaces and HUDs. However much we might wish to ignore it, all
games require some GUI work and will have a variety of interfaces (splash
screens, main menus, play GUIs, etc.) and some HUDs (counters, indicator
bars, etc.).

• Players and opponents. Although we could certainly have a game with
no directly identifi able players or opponents, 3D games generally do have
at least one model representing the player and other models opposing this
player in some fashion.

• Weapons. This seems pretty straightforward, but what I really mean here is
weapons and weapon analogues. The analogue, in this case, is something
that functions like a weapon but may not necessarily do damage.

Part IV Making the Game

572

• The world. This is a rather large game element and is in fact composed of a
multitude of subelements, including terrain, water, the sky, environmental
objects (trees, rocks, grass, etc.), environmental effects (rain, wind, light-
ning, the sun(s) and planets, etc.), structures (buildings, fences, bridges,
etc.), sounds, and so on.

• Power-ups and pickups. These are items that are often at the core of a
game and are meant to be interacted with. Sample items in this category
would be coins, gems, weapons, ammunition, health packs, etc.

• Special effects. Here we are talking about eye and ear candy. These do
have a place in gameplay, but they are often not directly tied to interaction,
which is where we should focus our attention fi rst.

• Miscellaneous elements. This last category is a grab bag for elements that
don’t fi t anywhere specifi cally. Some examples are inventory systems, col-
lision detection and response, damage and energy, and general scripting
tasks.

Now, armed with an idea of what a game element is, let’s list the game ele-
ments in our game.

14.2.1 Maze Runner: Game Elements
The fi nished game has the following elements and attributes.

• Interfaces. Splash screen GUI, main menu GUI, credits GUI, and play GUI.

• Game view. The game can be played in 3rd POV only.

• Player. The initial player will be the Blue Guy that comes with the FPS
Starter Kit. We will later design our own player. This player will be an
example of the simplest possible player that can be used in a game.

• Opponents. There are no opponents in this game, but some suggestions will
be provided for adding them if you wish to expand on this game later.

• The world. The game world is a simple cauldron-shaped pit. This pit will
contain a lake of lava. Our maze will consist of individual shapes that we
place using scripts and level-defi nition fi les. We will place some environ-
mental objects to spruce the place up. Additionally, there will be a sky
box, celestial bodies, clouds, wind, rain, and even lightning. We’re going
all out on special effects to show how to use as many Torque features as is
 reasonable.

• Obstacles. There are two types of active obstacles and three static obsta-
cles. The active obstacles include level blocks (individual and grouped)
that fade, disappear, and reappear over time. There are also blocks that
shoot fi reballs in any of eight fi xed compass directions (N, NE, E, SE, S,
SW, W, NW), or down, or any of the prior directions, but randomly. The
static obstacles are open horizontal spaces between blocks, vertical spaces
between blocks, and blocks themselves.

 Putting It All Together Chapter 14

573

• Getting around. To get around the maze, the player will run and jump.
Also, there can be up to three distinct teleport stations; that is, teleport sta-
tions can be grouped in sets, and there can be up to three distinct sets of
teleport stations in a level. Additionally, if any set contains more than two
stations, entering one station will randomly send the player to any one of
the other stations in the set.

• Pickups and power-ups. The only pickup in the game is the coin. Picking
up all coins is the primary goal. A HUD will show the total coins picked up
and the number of coins remaining for the level.

• Inventory system. We will use the “Simple Inventory” system that comes
with this guide and is described in Chapter 7, “Gameplay Classes.” It will
provide all the mechanics necessary to pick up coins and remove them
from the game world.

• Miscellaneous “glue” scripts. We will end up writing quite a few scripts
to tie the game together, to track the score and our lives count, as well as
to load the levels.

14.3 Game Goals, Rules, and Mechanics
Great! Now we know generally what the game is about and what elements
it has. The last thing we need to do is describe how the individual game ele-
ments interact.
 The goal of this game is very simple: score as high as possible by fi nishing
as many levels as possible before losing all of your lives.
 The rules and mechanics for this game are as follows.

• Pick up all the coins. Picking up all coins on a level ends the level and
takes the player to the next level.

• Stay alive. Falling into the lava below or getting hit by a fi reball kills the
player.

• Gain lives. To gain more lives, simply complete a level. One new life is
gained for each level completed.

• Teleporting. We can place up to three sets of teleport stations. Each set
may have two or more stations. If there are only two stations in a set, the
stations will teleport back and forth between each other. If a set has three
or more stations, the spawn point will be randomly selected. Teleporting
occurs by running over a station. The destination station will be temporar-
ily disabled to avoid infi nite teleport loops. It will not operate again until
you walk off the station. Teleporting is not instantaneous, so be careful
about fi reballs that cross stations, as you are temporarily unable to move
when teleporting.

• Respawning. When the player is killed, it will respawn in the location
where it was fi rst dropped into the game.

Part IV Making the Game

574

• Level loading. To make this game easily maintainable, tunable, and modi-
fi able by players, all level loading is controlled by a text fi le (the level fi le).
Players can add new levels and redefi ne levels to their hearts’ content.

14.4 Setting Up Our Workspace
Before we can work on any lessons, we must fi rst set up a work area. Every-
thing that you need to do this is supplied on the CD that comes with this
guide. If you examine the CD, you will fi nd the following directories.

• “\Appendices”. This directory contains the GPGT appendices.

• “\Base”. This directory contains data and scripts that are used in the lessons
and can also be used later to make new games. Please see the “Lesson Kit
Assets” appendix for additional information about the contents of this direc-
tory.

• “\GPGT LessonKit”. This directory contains the GPGT lesson kit. For more
information about it, please read the “Lesson Kit User’s Guide” appendix.

• “\MazeRunner”. Excluding the data and scripts in “\Base” and some con-
tent we will copy from the TGE demo that you should install using one of the
installers found in “\TorqueDemoInstallers”, this directory contains all of the
unique resources and scripts required to build the MazeRunner proto type.

• “\MazeRunnerAdvanced”. This directory contains a completed version of
MazeRunner with several additional features as suggested in Section 14.10,
“Improving The Game”.

• “\TorqueDemoInstallers”. This directory contains installers for TGE.

At this time, if you do not have the demo installed on your machine, please
do so by running the appropriate installer (based on your computer and

operating system type). Once you have fi nished, please continue reading.

14.4.1 Starting from Torque Demo
First, be sure to install a copy of the TGE demo using one of the install-
ers found in “\TorqueDemoInstallers”. Feel free to install this anywhere you
please. While writing our game, we will be copying fi les out of the installed
demo to a working directory.
 Second, let’s make a new (working) directory named “MazeRunner” and
place it on a drive with at least 100 MB of free space. We’ll want some elbow
room while we work. Please note, while we are writing our game (reading
the numbered lessons), this is the directory we will be working in. We will
be copying materials from the CD to this directory and editing them in some
places. Do not confuse this with the GPGT Lesson Kit which is also included
on the CD. The GPGT Lesson Kit is a separate application containing several

If you are a Linux user,
I must apologize. At
the time this book
went to print, version
1.4 of TGE for Linux
was still being worked
on. Please check the
GarageGames website
to see if it is ready and,
if so, download the
demo kit. Otherwise,
I suggest using one
of the other versions
of the engine in the
interim.

 Putting It All Together Chapter 14

583

Player::loseALife()
The easiest way to handle removing lives is to make a method scoped to the
Player class (so it can be called on the Player object) that handles all of the
bookkeeping. This simplifi es things greatly. Yes, right now only two things
can kill the player, but later you might add more, and having killing code all
over the place would be very bad.
 Here is the code (located in “mazerunnerplayer.cs”).

function Player::loseALife(%player) {
 // 1
 %player.lives--;

 // 2
 if(%player.lives <= 0) {
 schedule(0 , 0 , endGame);
 return;
 }

 // 3
 %player. setVelocity(“0 0 0”);
 %player. setTransform(%player.spawnPointTransform);
}

This code does the following.

1. It decrements the player’s life counter. (Yes, we haven’t talked about this
yet. It’s coming up soon.)

2. It checks to see if all of our lives are gone and then schedules a call to
endGame() (in “game.cs”) to unload the mission, destroy the player, dis-
connect the client from the server, and get us back into the main menu.

Why not call endGame() directly?
You may wonder why we schedule a call to endGame() instead of calling it
directly.

The reason we do this is that, when we call endGame(), we indirectly cause the
player to be deleted.

However, the player is the object that the loseALife() method was called
on, so when the engine tries to return from the call to endGame(), it will not
have anywhere to return to. This will crash the engine.

The lesson here is to never delete the current object in a method that is called on
that object. Always defer that deletion by using a call to schedule().

Calling schedule() with a time of 0 milliseconds tells the engine to run the
function as soon as possible after returning from all nested function calls. In
practice, this will always be on the next processing cycle or later.

Part IV Making the Game

584

3. If the game is not over, the player is moved back to its last spawn point.
This information is stored in the player by playerDrop() in the fi le
“levelloader.cs”:

$Game::Player.spawnPointTransform = (%actX SPC %actY SPC
 $CurrentElevation);

Initial Lives

In order to take away lives, we must have lives to take. The best place to add
initial lives to the player is either in its on Add() method or at the location
where we create it. I chose the on Add() method (in “mazerunnerplayer.cs”;
bold lines are new code):

function MazeRunner::on Add(%DB , %Obj) {
 Parent::on Add(%DB , %Obj);
 %Obj.lives = 3;
}

Fireballs

OK, we got a little off topic there, but we’re back now. The next question is:
how do fi reballs kill?
 The projectile object has an onCollision() callback that is called for
collisions with any world object. So, if we write a version of this callback in
the namespace of our projectile, we can have that callback check to see if the
player was hit and call loseALife().

function FireBallProjectile:: onCollision(%projectileDB ,
 %projectileObj ,
 %collidedObj ,
 %fade , %vec ,
 %speed) {
 if (%collidedObj. getClassName() $= “Player”) {
 %collidedObj.loseALife();
 }
}

In the above callback (located in “fi reballs.cs”), the engine is asked to get the
class name for the collided-with object. It then compares this to “Player”.
If the comparison returns true, loseALife() is called on the collided-with
object.

 Putting It All Together Chapter 14

585

Alternate Solution #1

There is an alternate way to write this code that would actually work in more
cases (i.e., for Player and aiPlayer).

// Alternate implementation
function FireBallProjectile:: onCollision(%projectileDB ,
 %projectileObj , %collidedObj ,
 %fade , %vec , %speed) {
 if (%collidedObj. getType() $= $TypeMasks::PlayerObjectType) {
 %collidedObj.loseALife();
 }
}

This alternate implementation uses the getType() method to get a bitmask
for the collided-with object. The bitmask contains bit settings for all classes
from which the object is derived as well as for the class itself. So, as I alluded
to, if the collision occurred against an aiPlayer (which is derived from Player),
this comparison would still work, whereas the prior code would not. In this
game, we don’t have that worry, so let’s leave it as is.

Alternate Solution #2

Originally, as I wrote this code for the book, I was using a bleeding-edge
version of the engine (version 1.4 before release), and I ran into a bug (that
has since been fi xed) where %collidedObj was always getting “1”. For a
moment, I thought I was stuck. Then, it occurred to me that there are other
ways to solve the identifi cation problem, and I wrote the following code.

%Offset = vectorSub(%vec , $Game::Player. getWorldBoxCenter());
%Len = vectorLen(%offset);
if(%len < 1.7) {
 $Game::Player.loseALife();
}

This code uses the position of the projectile’s collision and then compares it to
the position of the player’s centroid. If the distance between them is small (1.7
world units or less), in all likelihood the object that was hit is the player, and I
call loseALife(). This solved my temporary problem, and in the occasional
instance when the player wasn’t hit but was just close to the collision point,
the difference was not noticeable.
 The lesson here is that TGE is very fl exible, and you can often solve the
same problem in many ways. So, don’t let one problem stop you.

Part IV Making the Game

586

Out of Lives

At some time, after all this losing of lives, the player will be out of lives.
According to our initial rules list, this means the game is up, time to go home.
As we have already seen (above) the loseALife() method handles this case
and ends the game for us.

14.8.5 Moving On
The last things we need to fi x with regard to gameplay are moving on to the
next level and getting our extra life.

Last Coin

Our design rules stated that, when the last coin is picked up, the current level
should be unloaded and the next level should be loaded. So, how do we do
this?
 If you recall, the inventory system has a callback called onPickup().
When we discussed this callback, I said that you might want to override it to
implement special behaviors. This is one of those times.
 If you will look in “coins.cs”, you will fi nd the following implementation
of onPickup().

function Coin::onPickup(%pickupDB , %pickupObj ,
 %ownerObj) {
 // 1
 %status = Parent::onPickup(%pickupDB , %pickupObj ,
 %ownerObj);

 // 2
 if (CoinsGroup. getCount() == 0) {
 buildLevel($Game::NextLevelMap);
 $Game::Player.lives++;
 }

 // 3
 return %status;
}

This callback does the following.

1. It takes advantage of the prewritten pickup code by calling the Parent::
 version.

2. It then checks to see if the SimGroup CoinsGroup is empty. In the case that
it is empty, buildLevel() is called with the stored numeric ID of the next
level, and a new life is added to our player.

599

Index

A
ActionMaps 33, 356

actions 359
defi ning 357
devices 359
moveMap 222
unbinding 361
vehicle ActionMaps 235

add parent 89
alarmMode 197
animation 169

blended 20
cyclic 169
direction 170
non-blended 20
pausing 170
playing 169

animation sequences
activateBack 230, 231
activateBot 230
back 225
brakelight 230
Damage Animations 171
fall 225
jump 225
land 225
maintainBack 230, 231
maintainBot 230, 231
root 225
run 225
side 225
spring0 .. spring7 230
standjump 225
steering 230, 231
Vehicle 228

Atlas 268
Audio Emitters 296

B
Blue Guy 16, 17, 223
brushes

brush hardness 61, 62

brush mode 59, 60
editing actions 60
selection and <Radius> 62
selection mode 59, 60, 62

bump mapping 265

C
callbacks 21, 355, 383
Canvas 456
classes

animating 329
animations 196
as control object 208
AudioDescription 448
AudioEnvironment 448
AudioProfi le 448
AudioSampleEnvironment 448
bouncy 178
Camera 169, 201
CameraData 201
collisions 196
controlling 221
Debris 419
DebrisData 419
DecalData 426
ExplosionData 427
fi eld of view (FOV) 205
FileObject 369
friction 179
GameBase 31, 143, 155
GameBaseData 143, 155
gravity 179
GuiControl 470
HoverVehicle 240
HoverVehicleData 240
InteriorInstance 17, 31, 197
Item 157, 175
ItemData 175
movement 217
namespaces 353
networking 356
pitch 208

600

 Index

Player 213
PlayerData 213
POV Cookbook 210
Projectile 437
ProjectileData 438
restricting POV 208
rotating 177
SceneObject 31, 143, 151
ScriptGroup 31, 352
ScriptObject 31, 352
Selecting Node 208
ShapeBase 31, 158
ShapeBaseData 31, 158
ShapeBaseImageData 157, 189
SimDataBlock 143, 148
SimGroup 31, 350
SimObject 31, 143
SimSet 31, 347
static 177
StaticShape 157, 183
StaticShapeData 183
sticky 178
TSStatic 31, 187
Vehicle 231
VehicleData 231
WheeledVehicle 236
WheeledVehicleData 236
WheeledVehicleSpring 238
WheeledVehicleTire 237
yaw 209

client-server architecture. See network-
ing, client-server

cloaking 160
clouds 281

storm 284
collision detection (COLDET) 17, 19,

153, 220
collision meshes 18
collision timeout 180
onCollision() 21, 234, 249, 385
ShapeBaseImageData 196
TSStatic 187

concave 18
console callbacks

applyDamage() 163
click() 494, 508, 544, 545
doDismount() 235
eval() 413, 414

exec() 133, 181, 185, 223, 226, 256,
257, 315, 364, 372, 380, 576

onAction() 518
onClearSelected() 486
onCollision() 21, 135, 233, 234,

248, 249, 252, 385, 584, 585
onEnterTrigger() 339, 342, 386,

582
onInputEvent() 525
onInspect() 535
onLeaveTrigger() 339, 342, 343, 386
onMount() 234
onPickup() 21
onRightMouseDown() 535
onSelectPath() 524
onSleep() 385, 459, 544
onTabComplete() 503
onTabSelected() 486
onTickTrigger() 339, 340
onTrigger() 340
onTriggerTick() 340
onURL() 497
onWake() 385, 459, 491, 544, 551, 552

console functions 114
activatePackage() 123, 124, 125
addMaterialMapping() 217
calcExplosionCoverage() 434
call() 414
cancel() 390, 518
commandToClient() 416, 417
commandToServer() 250, 251, 364,

415, 416, 418
compile() 379, 380
containerRayCast() 401
detag() 107
echo() 100, 144, 145, 146, 154, 155,

156, 168, 177, 179, 184, 341, 348,
349, 350, 351, 353, 354, 355, 358,
365, 366, 369, 384, 388, 390, 393,
394, 395, 396, 397, 398, 399, 400,
404, 405, 406, 411, 412, 413, 414,
434, 473, 474, 475, 494, 495, 505,
506, 507, 520, 527, 532, 551

error() 405
eval() 413, 414
exec() 133, 181, 185, 223, 226, 256,

257, 315, 364, 372, 380, 576
expandFilename() 367, 369, 490,

492, 551, 556

601

 Index

console functions (continued)
fi leBase() 368
fi leExt() 368
fi leName() 367, 368, 369, 490, 492,

551, 556
fi lePath() 367
fi ndFirstFile() 364, 365, 366
fi ndNextFile() 364, 365, 366
fi rstWord() 392, 393
getBoxCenter() 404
getEventTimeLeft() 389
getFieldCount() 395
getFields() 135, 395
getFileCount() 366
getFileCRC() 366
getRandom() 405, 409
getRandomSeed() 405
getRealTime() 390, 391
getRecord() 394, 395
getRecordCount() 394, 395
getRecords() 394
getScheduleDuration() 390
getSubStr() 396, 397, 557
getTimeSinceStart() 389
getWord() 153, 392, 472, 562, 566
getWordCount() 392, 393
getWords() 153, 243, 343, 392
isEventPending() 389
isFile() 368
isObject() 258, 344, 375, 409, 412,

413, 417, 528, 550
ltrim() 399
mAbs() 400, 402
mAcos() 402, 565
mAsin() 402
mAtan() 402
MatrixCreate() 403
MatrixMulPoint() 400, 401, 403
MatrixMultiply() 403
mCeil() 400, 402
mCos() 402
mDegToRad() 402
mFloatLength() 405, 406
mFloor() 400, 402, 560
mLog() 402
mPow() 400, 402
mRadToDeg() 402
mSin() 402
mSolveCubic() 403, 404

mSolveQuadratic() 403, 404
mSqrt() 400, 402
mTan() 402
NextToken() 393, 394
quit() 90, 547
removeField() 395
removeRecord() 394, 395
removeWord() 392, 393
restWords() 392, 393
rtrim() 399
schedule() 148, 161, 171, 377, 387,

388, 389, 390, 391, 392, 406, 407,
409, 491, 561

setDefaultFov() 203, 205, 206
setField() 395
setFov() 203, 205, 206
setRandomSeed() 405
setRecord() 394, 395
setWord() 392, 393
setZoomSpeed() 203, 206
strchr() 396, 398
strcmp() 398
stricmp() 398
stripChars() 399
StripMLControlChars() 399
stripTrailingSpaces() 399
strlen() 396, 397, 556
strlwr() 396
strpos() 397
strreplace() 397, 398
strstr() 397
strupr() 396
trim() 399
VectorCross() 402
VectorDist() 402
VectorDot() 402, 565
VectorLen() 179, 243, 402, 585
VectorNormalize() 402, 447, 565
VectorOrthoBasis() 402
VectorScale() 168, 402, 444, 447
VectorSub() 243, 341, 402, 528,

585
console methods 118, 120

activateLight() 197
add() 110, 135, 153, 163, 167, 177,

181, 182, 257, 258, 259, 334, 342,
347, 348, 350, 351, 355, 375, 383,
384, 402, 444, 447, 458, 494, 517,
543, 580, 582, 584, 589

602

 Index

console methods (continued)
addColumn() 480
addMenu() 513
addPage() 486
addRow() 480, 504
addScheme() 516
addSelection() 533, 534, 535
addText() 498, 551
applyDamage() 163
applyImpulse() 168, 256
applyRepair() 163
attach() 496
bind() 357, 360, 361, 364, 415, 418
bindCmd() 250, 251, 358, 360, 361
bringToFront() 349
buildIconTable() 530
clear() 350, 505, 518, 532
clearMenuItems() 513
clearMenus() 513
clearSelection() 533
close() 369, 370, 371, 551
delete() 146, 147, 148, 258, 344,

348, 351, 369, 370, 371, 375, 384,
388, 389, 543, 551

deleteLine() 496
deleteSelection() 534, 535
detach() 496, 497
dump() 139, 147, 148, 247, 496
echoTriggerableLights() 197
fi ndItemByName() 532
fi ndText() 517
fi ndTextIndex() 506
forceOnAction() 518
forceRefl ow() 498, 551
get() 543
getChild() 535
getClassName() 145, 148, 149, 584
getColumnCount() 480
getColumnOffset() 480
getControlObject() 205
getCount() 348, 349, 350, 351, 377,

406, 409, 417, 586, 589, 590
getCursorPos() 503
getDamageLevel() 164
getDataBlock() 145, 155, 163,

164, 168
getExtent() 562, 566
getEyePoint() 168
getEyeTransform() 168

getEyeVector() 168
getForwardVector() 154
getGroup() 148, 343, 528
getId() 119, 144, 145, 148, 250,

251, 348, 349, 350, 413
getItemText() 532
getItemValue() 532
getLineText() 495
getMountNodeObject() 243
getMuzzlePoint() 437, 444
getMuzzleVector() 444
getName() 145, 148, 255, 355, 384,

388
getNextSibling() 535
getNumDetailLevels() 198
getObject() 348, 349, 417
getObjectBox() 154, 401
getParent() 535
getPathId() 336
getPosition() 334, 342, 434, 472,

566
getPoweredState() 184
getPrevSibling() 535
getRowCount() 480
getRowId() 505
getRowNumById() 505
getRowOffset() 480
getRowText() 505
getRowTextById() 505
getScale() 152, 314
getSelected() 517
getSelectedFile() 524
getSelectedId() 505, 506
getSelectedPath() 524
getSlotTransform() 243
getState() 417, 582
getText() 508, 517
getTextById() 517
getTransform() 153, 207, 401
getType() 146, 148, 180, 585
getValue() 519, 520
getVelocity() 167, 444
getWorldBox() 154
getWorldBoxCenter() 154, 168,

243, 341, 447, 585
identity() 519
init() 425
insertLine() 495
isActive() 474

603

 Index

console methods (continued)
isAwake() 474
isEOF() 369, 376, 551
isRotating() 177
isRowActive() 506
isStatic() 177
isVisible() 474, 561
listObjects() 350
makeFirstResponder() 461, 462,

473, 482
mountImage() 174, 175
mountObject() 173, 174
moveSelection() 533, 535
open() 531
openForAppend() 371
openForRead() 369, 551
openForWrite() 370
pauseThread() 170
performClick() 508
PhysicalZone() 128, 129, 334, 342
playAudio() 172
playThread() 169, 170, 171
pop() 250, 362
popBackLine() 496
popDialog() 457
popFrontLine() 496
push() 362
pushBackLine() 495
pushDialog() 457
pushFrontLine() 495
pushToBack() 349
readLine() 369, 551
reload() 551, 552
remove() 258, 344, 349, 355, 376,

383, 384, 459, 543
removeColumn() 480
removeMenu() 513
removeRow() 480, 504
removeRowById() 505
replaceText() 517
resize() 472, 497, 558, 562, 566
rowCount() 480, 505
save() 148, 361
scrollToBottom() 482
scrollToTag() 498
scrollToTop() 482, 498
scrollVisible() 506
select() 516, 518, 535
setActionThread() 415, 417

setActive() 474
setAlarmMode() 197
setBitmap() 490, 491, 509, 557
setCloaked() 160
setCollapsed() 485
setCollisionTimeout() 180
setColumnOffset() 480
setContent() 93, 456, 545, 547,

549
setControlObject() 205, 207, 581
setCursor() 521
setCursorPos() 503
setDamageFlash() 165
setDamageState() 164, 166
setDataBlock() 155, 156
setDetailLevel() 198
setEnergyLevel() 167
setFlyMode() 203, 207
setHidden() 407
setInvincibleMode() 164
setMenuItemBitmap() 514
setMenuItemChecked() 515
setMenuItemEnable() 515
setMenuItemText() 515
setMenuItemVisible() 515
setMenuText() 515
setMenuVisible() 515
setName() 148
setOrbitMode() 203, 207
setPath() 524
setPoweredState() 184
setProfi le() 471
setRechargeRate() 167
setRepairRate() 163
setRowActive() 506
setRowById() 504
setRowOffset() 480
setScale() 152, 188, 314
setSelectedById() 506
setSelectedPath() 524
setSelectedRow() 506
setSkinName() 161, 185
setText() 497, 498, 501, 508, 517
setThreadDir() 170
setTransform() 153, 188, 343, 583
setValue() 490, 491, 519, 551
setVelocity() 167, 583
setVisible() 474, 561
setWhiteOut() 165

604

 Index

console methods (continued)
size() 472, 497, 558, 562, 566
sort() 507, 518
startFade() 161, 407
stopAudio() 172
stopThread() 170, 171
stormClouds() 284
stormFog() 283
stormFogShow() 283
toggle() 80
writeLine() 370, 371

console objects 115, 133
console methods 118
dynamic fi elds 119
fi elds 118
handles 118
names 118

control statements 112
branching 112
for 113
if-then-else 112
switch 112
switch$ 113
while 113

conversion 396
convex 17, 18, 19, 158
CRC 175, 366

D
damage fl ashes 165
damaging 162, 163

Damage States 163
Invincibility 164
Visual Feedback 165

datablocks 29, 127, 133, 149
accessing fi elds 132
creating objects with 129
declaring 130

data types 106
arrays 109
Booleans 108
cleaning 399
comparisons 398
escape sequences 107
manipulating 392
metrics 396
numbers 106
searching and replacing 396

strings 106
string operators 107
vectors 110

debugging
dump() 139, 147
tree() 139

DecalManager 426
Decals 425
destroying 162
dialogs

popping 457
pushing 457

DIF. See Interiors
disabling 162
DML 279, 280, 281, 284, 285
DTS. See shapes
Dynamix 3, 16, 18

E
Earthsiege 3
emitters

backwardJetEmitter 229
damageEmitter 230
damageEmitterOffset 230
dustEmitter 230
dustTrailEmitter 230
footPuffEmitter 215
forwardJetEmitter 229
numDmgEmitterAreas 230
particleEmitter 304, 305, 315,

316, 317, 341, 344, 430, 436, 440,
445, 446

splashEmitter 216
stateEmitter 192
stateEmitterNode 192
stateEmitterTime 192
tireEmitter 230
trailEmitter 229, 230
useEmitterColors 306

energy 166
environmental mapping 160
events 386

accuracy 390
cancelling 390
checking for 389
repeating 391
scheduling 387, 388
times 389

605

 Index

explosions 162, 166, 427
eyeOffset 190
eyeRotation 190

F
fi elds 395
fi eld of view (FOV) 205
fi les

appending to 371
calculating CRC 366
counting 366
Dot (.) versus Slash (/) versus Tilde

(~) 367
expanding names 367
extracting name 367
extracting path 367
extracting prefi x 368
extracting suffi x 368
fi lename wildcards 366
locating 364
overwriting 370
reading 368, 369
writing 368, 370

fi le I/O 364
fi rstPerson 190
fog 282

general 282
layers 282

forces and factors 217
forward vector 154
fxFoliageReplicator 318
fxLight 335
fxShapeReplicator 318
fxSunLight 326

G
games

3-D Language Spain 5
dRacer 5
Earthsiege 3
Golden Fairway 5
Lore 4
Marble Blast GOLD 4
Minions Of Mirth 6
Orbz 4
RocketBowl Plus 5
Starsiege 3
Think Tanks 4

Tribes 1 & 2 3, 64, 99, 197, 268, 273,
401

getType() 146
Type Masks 145

globals
$Camera::movementSpeed 203, 207
$cameraFov 203, 204, 208
$movementSpeed 203, 207, 221
$mvBackwardAction 221
$mvDownAction 221
$mvForwardAction 221
$mvFreeLook 209
$mvLeftAction 221
$mvPitch 222
$mvPitchDownSpeed 222
$mvPitchUpSpeed 222
$mvRightAction 221
$mvTriggerCount0–$mvTrigger-

Count5 232, 236, 241
$mvUpAction 221
$mvYaw 222
$mvYawLeftSpeed 222
$mvYawRightSpeed 222
$pref::Decal::decalTimeout

426
$pref::Decal::maxNumDecals

426
$pref::decalsOn 426
$pref::Input::KeyboardTurn-

Speed 222
$pref::Interior::detailAdjust

198
$pref::Net::PacketRateTo-

Client 595
$pref::Net::PacketRateTo-

Server 595
$pref::Net::PacketSize 595
$pref::Terrain::enableEmboss-

Bumps 266
$thisControl 472

gravity 179, 180, 182, 183, 241, 304,
305, 316, 333, 422, 439, 445

GUI
accelerators 472
active 474
autosizing 469
awake 474
background color 465
bitmap arrays 463

606

 Index

GUI (continued)
borders 464
commands 472
cursors 464
extent 471
fi rst responder 473
fonts 465
key and mouse attributes 469
margins 481
nodifi ers 527
nouse events 525
position 471
profi les 470
scrollbars 481
size 471
skinning 476, 482, 484, 487, 492,

509, 510, 512, 523
text formatting 468
Torque Markup Language (TorqueML)

499
variables 473
visibility 472, 474

I
I/O

fi le 364
images 189
image fi le lists (IFLs) 21
impulses 167
interiors 17. See also Classes: Interior-

Instance
level of detail (LOD) 198

inventories 243

L
Lessons

#1—Terrain for Our Game 72
#2—Loading Datablocks 132
#3—Game Coins 181
#4—Fade and Fireball Blocks 184
#5—Maze Blocks 188
#6—Simplest Player 223
#7—Preparing Our Game Inventory

256
#8—Lava in the Cauldron 278
#9—Starry Night 284
#10—Low Lighting 288
#11—Stormy Weather 294
#12—Teleport Station Effect 315

#13—Celestial Bodies 332
#14—Teleport Stopper 334
#15—Teleport Triggers 340
#16—MoveMap 363
#17—Level Loader 371
#18—Game Events 406
#19—FireBall Explosion 434
#20—The FireBall 444
#21—Game Sounds 450
About 11

level of detail (LOD) 19, 198
lightning 288
lights and lighting 191, 285

constantLight 176, 191
Interiors 197
lightColor 176, 191, 440
lightRadius 176, 191, 335, 440
lightTime 191
lightType 176, 182, 191
noLight 176, 182, 191
pulsingLight 176, 191

M
math 400

absolute value 402
addition 402
ceiling 402
centroids 404
conversion
 degrees to radians 402
 radians to degrees 402
cosine 402
creation 403
creation (from Euler angles) 403
cross Product 402
cubics 403
distance (between) 402
dot product 402
fl oor 402
inverse cosine 402
inverse tangent 402
length 402
logarithm 402
modifying mantissas 405
multiplication 403
normalization 402
orthographic basis 402
point multiplication 403
power 402

607

 Index

math (continued)
quadratics 403
random numbers 404
scaling 402
sine 402
square root 402
subtraction 402
tangent 402

meshes
collision-0–collision-8 185, 228
LOSCol-9–LOSCol-16 228

Mesh Nodes
cam 165, 204, 208, 210, 223, 224, 229
chassis 228, 236, 260
contrail0–contrail3 229, 230
eye 204, 208, 210, 223, 224, 229
hub0–hub7 229
JetNozzle0–JetNozzleX 229, 230
mount0–mount31 172, 173, 174, 229,

242
Tire 228, 237, 238, 239, 240, 260, 261

mirrors 198, 199, 214
missions 22
mounting 172, 191

alternate positions (vehicles) 242
image-to-shape 174
mountPoint 191
nodes 172
offset 191
rotation 191
shape-to-shape 173
slots 172
vehicle 233

movement 217, 221

N
namespaces 126, 133

building 149
chaining 149
inheritance 150
rules 149
scope 151

networking
client-server 24
communications 27
control object 28
division of labor 27
ghosts 28
scope 28

O
objects 28
objects (console) 115
operators

string comparisons 111

P
packages 122
particles 302
paths 336
performance

culling replicators 323
physical zones 333
portals 20
position 152
POV cookbook 210
precipitation 288

R
random numbers 404
records 394
render bans 280
repairing 162, 163
replicators 318
rotation 152

S
scale 152
scales

over vertex brush scale 58
selected brush scale 58

ShapeBaseImageData
animations 195, 196
running scripts 195

shapes 16, 157
skinning 487
skins (shape) 161

multi-skinning naming convention
161

sky
visibility 282

sky box 279, 280
sound 172

2D 22, 297
3D 22, 299
AudioDescription 448
AudioProfi le 448
Audio Emitters 296

special effects 31

608

 Index

squareSize 267, 268, 270, 271
Starsiege 3
state machines 192

defi ning 193
doing work 194
running animations 195
running scripts 195
transitioning 193

strings
cleaning 399
comparisons 398
manipulating 392
metrics 396
searching and replacing 396

Sun 285

T
Terrain 263
ticks 24
tokens 393
TorqueScript

built-in functions 103
transforms 153, 168

getEyeTransform() 168
getEyeVector() 168
getForwardVector() 154
getPosition() 334, 342, 434, 472,

566
getScale() 152, 314
getTransform() 153, 207, 401
object boxes 151, 154, 401

setScale() 152, 188, 314
setTransform() 153, 188, 343, 583
world boxes 154

Tribes 1 & 2 3, 99, 197, 268, 273, 401
triggers 338

group 340
type masks 145

U
Unicode 467, 468

V
vehicles 227

animations 228
velocity 167, 178

getVelocity() 167, 444
maxVelocity() 178, 179, 221, 290
setVelocity() 167, 583

visibility 282

W
water 269

fl owing 274
refl ections 276
shoreline 275
types 273
waves 272

words 392

Z
zooming 205

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

